Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Med Genet ; 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38408845

RESUMO

BACKGROUND: Primary ciliary dyskinesia (PCD) is a rare airway disorder caused by defective motile cilia. Only male patients have been reported with pathogenic mutations in X-linked DNAAF6, which result in the absence of ciliary dynein arms, whereas their heterozygous mothers are supposedly healthy. Our objective was to assess the possible clinical and ciliary consequences of X-chromosome inactivation (XCI) in these mothers. METHODS: XCI patterns of six mothers of male patients with DNAAF6-related PCD were determined by DNA-methylation studies and compared with their clinical phenotype (6/6 mothers), as well as their ciliary phenotype (4/6 mothers), as assessed by immunofluorescence and high-speed videomicroscopy analyses. The mutated X chromosome was tracked to assess the percentage of cells with a normal inactivated DNAAF6 allele. RESULTS: The mothers' phenotypes ranged from absence of symptoms to mild/moderate or severe airway phenotypes, closely reflecting their XCI pattern. Analyses of the symptomatic mothers' airway ciliated cells revealed the coexistence of normal cells and cells with immotile cilia lacking dynein arms, whose ratio closely mirrored their XCI pattern. CONCLUSION: This study highlights the importance of searching for heterozygous pathogenic DNAAF6 mutations in all female relatives of male PCD patients with a DNAAF6 defect, as well as in females consulting for mild chronic respiratory symptoms. Our results also demonstrate that about one-third-ranging from 20% to 50%-normal ciliated airway cells sufficed to avoid severe PCD, a result paving the way for gene therapy.

2.
Eur J Hum Genet ; 31(9): 1083-1087, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37380697

RESUMO

Biallelic pathogenic variants in the surfactant protein (SP)-B gene (SFTPB) have been associated with fatal forms of interstitial lung diseases (ILD) in newborns and exceptional survival in young children. We herein report the cases of two related adults with pulmonary fibrosis due to a new homozygous SFTPB pathogenic variant, c.582G>A p.(Gln194=). In vitro transcript studies showed that this SFTPB synonymous pathogenic variant induces aberrant splicing leading to three abnormal transcripts with the preservation of the expression of a small proportion of normal SFTPB transcripts. Immunostainings on lung biopsies of the proband showed an almost complete loss of SP-B expression. This hypomorphic splice variant has thus probably allowed the patients' survival to adulthood while inducing an epithelial cell dysfunction leading to ILD. Altogether, this report shows that SFTPB pathogenic variants should be considered in atypical presentations and/or early-onset forms of ILD particularly when a family history is identified.


Assuntos
Doenças Pulmonares Intersticiais , Fibrose Pulmonar , Adulto , Criança , Pré-Escolar , Humanos , Recém-Nascido , Doenças Pulmonares Intersticiais/diagnóstico , Doenças Pulmonares Intersticiais/genética , Fibrose Pulmonar/genética , Proteína B Associada a Surfactante Pulmonar/genética
3.
Elife ; 122023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37342083

RESUMO

A20 haploinsufficiency (HA20) is an autoinflammatory disease caused by heterozygous loss-of-function variations in TNFAIP3, the gene encoding the A20 protein. Diagnosis of HA20 is challenging due to its heterogeneous clinical presentation and the lack of pathognomonic symptoms. While the pathogenic effect of TNFAIP3 truncating variations is clearly established, that of missense variations is difficult to determine. Herein, we identified a novel TNFAIP3 variation, p.(Leu236Pro), located in the A20 ovarian tumor (OTU) domain and demonstrated its pathogenicity. In the patients' primary cells, we observed reduced A20 levels. Protein destabilization was predicted in silico for A20_Leu236Pro and enhanced proteasomal degradation was confirmed in vitro through a flow cytometry-based functional assay. By applying this approach to the study of another missense variant, A20_Leu275Pro, for which no functional characterization has been performed to date, we showed that this variant also undergoes enhanced proteasomal degradation. Moreover, we showed a disrupted ability of A20_Leu236Pro to inhibit the NF-κB pathway and to deubiquitinate its substrate TRAF6. Structural modeling revealed that two residues involved in OTU pathogenic missense variations (i.e. Glu192Lys and Cys243Tyr) establish common interactions with Leu236. Interpretation of newly identified missense variations is challenging, requiring, as illustrated here, functional demonstration of their pathogenicity. Together with functional studies, in silico structure analysis is a valuable approach that allowed us (i) to provide a mechanistic explanation for the haploinsufficiency resulting from missense variations and (ii) to unveil a region within the OTU domain critical for A20 function.


Assuntos
Mutação de Sentido Incorreto , NF-kappa B , Humanos , NF-kappa B/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética
4.
Arthritis Rheumatol ; 75(3): 468-474, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36122175

RESUMO

OBJECTIVE: To identify the molecular basis of a severe systemic autoinflammatory disorder (SAID) and define its main phenotypic features, and to functionally assess the sequence variations identified in LYN, a gene encoding a nonreceptor tyrosine kinase. METHODS: We used targeted next-generation sequencing and in vitro functional studies of Lyn phosphorylation state and Lyn-dependent NF-κB activity after expression of recombinant Lyn isoforms carrying different sequence variations. RESULTS: We identified a de novo LYN variation (p.Tyr508His) in a patient presenting since birth with recurrent fever, chronic urticaria, atopic dermatitis, arthralgia, increased inflammatory biomarkers, and elevated plasma cytokine levels. We studied the consequences on Lyn phosphorylation state of the p.Tyr508His variation and of the 2 LYN variations reported so far (p.Tyr508Phe and p.Tyr508*), and found that all 3 variations prevent phosphorylation of residue 508 and lead to autophosphorylation of Tyr397. Additionally, these 3 LYN variations activate the NF-κB pathway. These results show a gain-of-function effect of the variations involving Tyr508 on Lyn activity. CONCLUSION: This study demonstrates the pathogenicity of the first 3 LYN variations identified in SAID patients and delineates the phenotypic spectrum of a disease entity characterized by severe, early-onset, systemic inflammatory disease affecting neonates with no family history of SAID. All 3 LYN variations affect the same tyrosine residue located in the C-terminus of Lyn, thereby demonstrating the critical role of this residue in the proper regulation of Lyn activity in humans.


Assuntos
NF-kappa B , Quinases da Família src , Recém-Nascido , Humanos , Quinases da Família src/genética , Quinases da Família src/metabolismo , NF-kappa B/metabolismo , Mutação com Ganho de Função , Fosforilação , Proteínas Tirosina Quinases
5.
J Allergy Clin Immunol ; 150(6): 1545-1555, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35780935

RESUMO

BACKGROUND: Urticarial lesions are observed in both cutaneous and systemic disorders. Familial forms of urticarial syndromes are rare and can be encountered in systemic autoinflammatory diseases. OBJECTIVE: We sought to investigate a large family with dominantly inherited chronic urticarial lesions associated with hypercytokinemia. METHODS: We performed a genetic linkage analysis in 14 patients from a 5-generation family, as well as whole-exome sequencing, cytokine profiling, and transcriptomic analyses on samples from 2 patients. The identified candidate protein was studied after in vitro expression of the corresponding normal and mutated recombinant proteins. An unsupervised proteomic approach was used to unveil the associated protein network. RESULTS: The disease phenotype of the most affected family members is characterized by chronic urticarial flares associated with extremely high plasma levels of proinflammatory (IL-1ß, IL-6, and TNF-α) and anti-inflammatory (IL-10 and IL-1 receptor antagonist [IL-1RA]) cytokines, with no secondary organ dysfunction, no susceptibility to infections, no fever, and normal C-reactive protein levels. Monocyte transcriptomic analyses identified an immunotolerant profile in the most affected patient. The affected family members carried a loss-of-function mutation in RNF213 that encodes mysterin, a protein with a poorly known physiologic role. We identified the deubiquitinase CYLD, a major regulator of inflammation, as an RNF213 partner and showed that CYLD expression is inhibited by wild-type but not mutant RNF213. CONCLUSION: We identified a new entity characterized by chronic urticarial lesions associated with a clinically blunted hypercytokinemia. This disease, which is due to loss of function of RNF213, reveals mysterin's key role in the complex molecular network of innate immunity.


Assuntos
Síndrome da Liberação de Citocina , Proteômica , Humanos
6.
Rheumatology (Oxford) ; 62(1): 473-479, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-35640127

RESUMO

OBJECTIVE: To identify the molecular basis of a systemic autoinflammatory disorder (SAID) evocative of TNF receptor-associated periodic syndrome (TRAPS). METHODS: (i) Deep next generation sequencing (NGS) through a SAID gene panel; (ii) variant allele distribution in peripheral blood subpopulations; (iii) in silico analyses of mosaic variants using TNF receptor superfamily 1A (TNFRSF1A) crystal structure; (iv) review of the very rare TNFRSF1A mosaic variants reported previously. RESULTS: In a 36-year-old man suffering from recurrent fever for 12 years, high-depth NGS revealed a TNFRSF1A mosaic variant, c.176G>A p.(Cys59Tyr), which Sanger sequencing failed to detect. This mosaic variant displayed a variant allele fraction of 14% in whole blood; it affects both myeloid and lymphoid lineages. p.(Cys59Tyr), a recurrent germline pathogenic variant, affects a crucial cysteine located in the first cysteine-rich domain (CRD1) and involved in a disulphide bridge. Introduction of a tyrosine at this position is expected to disrupt the CRD1 structure. Review of the three previously reported TNFRSF1A mosaic variants revealed that they are all located in a small region of CRD2 and that germinal cells can be affected. CONCLUSION: This study expands the localization of TNFRSF1A mosaic variants to the CRD1 domain. Noticeably, residues involved in germline TNFRSF1A mutational hot spots can also be involved in post-zygotic mutational events. Including our study, only four patients have been thus far reported with TNFRSF1A mosaicism, highlighting the need for a high-depth NGS-based approach to avoid the misdiagnosis of TRAPS. Genetic counselling has to consider the potential occurrence of TNFRSF1A mosaic variants in germinal cells.


Assuntos
Cisteína , Doenças Hereditárias Autoinflamatórias , Masculino , Humanos , Adulto , Cisteína/genética , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Febre/genética , Doenças Hereditárias Autoinflamatórias/genética , Doenças Hereditárias Autoinflamatórias/diagnóstico , Mutação
7.
Eur Respir J ; 56(6)2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32855221

RESUMO

INTRODUCTION: Interstitial lung diseases (ILDs) can be caused by mutations in the SFTPA1 and SFTPA2 genes, which encode the surfactant protein (SP) complex SP-A. Only 11 SFTPA1 or SFTPA2 mutations have so far been reported worldwide, of which five have been functionally assessed. In the framework of ILD molecular diagnosis, we identified 14 independent patients with pathogenic SFTPA1 or SFTPA2 mutations. The present study aimed to functionally assess the 11 different mutations identified and to accurately describe the disease phenotype of the patients and their affected relatives. METHODS: The consequences of the 11 SFTPA1 or SFTPA2 mutations were analysed both in vitro, by studying the production and secretion of the corresponding mutated proteins and ex vivo, by analysing SP-A expression in lung tissue samples. The associated disease phenotypes were documented. RESULTS: For the 11 identified mutations, protein production was preserved but secretion was abolished. The expression pattern of lung SP-A available in six patients was altered and the family history reported ILD and/or lung adenocarcinoma in 13 out of 14 families (93%). Among the 28 SFTPA1 or SFTPA2 mutation carriers, the mean age at ILD onset was 45 years (range 0.6-65 years) and 48% underwent lung transplantation (mean age 51 years). Seven carriers were asymptomatic. DISCUSSION: This study, which expands the molecular and clinical spectrum of SP-A disorders, shows that pathogenic SFTPA1 or SFTPA2 mutations share similar consequences for SP-A secretion in cell models and in lung tissue immunostaining, whereas they are associated with a highly variable phenotypic expression of disease, ranging from severe forms requiring lung transplantation to incomplete penetrance.


Assuntos
Doenças Pulmonares Intersticiais , Neoplasias Pulmonares , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Humanos , Lactente , Doenças Pulmonares Intersticiais/genética , Neoplasias Pulmonares/genética , Pessoa de Meia-Idade , Mutação , Fenótipo , Proteína A Associada a Surfactante Pulmonar/genética , Adulto Jovem
8.
Eur Respir J ; 49(5)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28495692

RESUMO

Despite its high prevalence and mortality, little is known about the pathogenesis of rheumatoid arthritis-associated interstitial lung disease (RA-ILD). Given that familial pulmonary fibrosis (FPF) and RA-ILD frequently share the usual pattern of interstitial pneumonia and common environmental risk factors, we hypothesised that the two diseases might share additional risk factors, including FPF-linked genes. Our aim was to identify coding mutations of FPF-risk genes associated with RA-ILD.We used whole exome sequencing (WES), followed by restricted analysis of a discrete number of FPF-linked genes and performed a burden test to assess the excess number of mutations in RA-ILD patients compared to controls.Among the 101 RA-ILD patients included, 12 (11.9%) had 13 WES-identified heterozygous mutations in the TERT, RTEL1, PARN or SFTPC coding regions. The burden test, based on 81 RA-ILD patients and 1010 controls of European ancestry, revealed an excess of TERT, RTEL1, PARN or SFTPC mutations in RA-ILD patients (OR 3.17, 95% CI 1.53-6.12; p=9.45×10-4). Telomeres were shorter in RA-ILD patients with a TERT, RTEL1 or PARN mutation than in controls (p=2.87×10-2).Our results support the contribution of FPF-linked genes to RA-ILD susceptibility.


Assuntos
Artrite Reumatoide/genética , Predisposição Genética para Doença , Doenças Pulmonares Intersticiais/genética , Fibrose Pulmonar/genética , Adulto , Idoso , Artrite Reumatoide/complicações , Estudos de Casos e Controles , DNA Helicases/genética , Europa (Continente) , Exoma , Feminino , Estudos de Associação Genética , Heterozigoto , Humanos , Doenças Pulmonares Intersticiais/complicações , Masculino , Pessoa de Meia-Idade , Mutação , Fenótipo , Fibrose Pulmonar/complicações , Fatores de Risco , Análise de Sequência de DNA , Software , Telomerase/genética
9.
Am J Hum Genet ; 99(2): 489-500, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27486783

RESUMO

Primary ciliary dyskinesia (PCD) is an autosomal-recessive disease due to functional or ultra-structural defects of motile cilia. Affected individuals display recurrent respiratory-tract infections; most males are infertile as a result of sperm flagellar dysfunction. The great majority of the PCD-associated genes identified so far encode either components of dynein arms (DAs), which are multiprotein-ATPase complexes essential for ciliary motility, or proteins involved in DA assembly. To identify the molecular basis of a PCD phenotype characterized by central complex (CC) defects but normal DA structure, a phenotype found in ∼15% of cases, we performed whole-exome sequencing in a male individual with PCD and unexplained CC defects. This analysis, combined with whole-genome SNP genotyping, identified a homozygous mutation in DNAJB13 (c.833T>G), a gene encoding a HSP40 co-chaperone whose ortholog in the flagellated alga Chlamydomonas localizes to the radial spokes. In vitro studies showed that this missense substitution (p.Met278Arg), which involves a highly conserved residue of several HSP40 family members, leads to protein instability and triggers proteasomal degradation, a result confirmed by the absence of endogenous DNAJB13 in cilia and sperm from this individual. Subsequent DNAJB13 analyses identified another homozygous mutation in a second family; the study of DNAJB13 transcripts obtained from airway cells showed that this mutation (c.68+1G>C) results in a splicing defect consistent with a loss-of-function mutation. Overall, this study, which establishes mutations in DNAJB13 as a cause of PCD, unveils the key role played by DNAJB13 in the proper formation and function of ciliary and flagellar axonemes in humans.


Assuntos
Transtornos da Motilidade Ciliar/genética , Proteínas de Choque Térmico/genética , Infertilidade Masculina/genética , Mutação , Adolescente , Proteínas Reguladoras de Apoptose , Axonema/genética , Cílios/genética , Transtornos da Motilidade Ciliar/patologia , Exoma/genética , Feminino , Flagelos/genética , Flagelos/patologia , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico/metabolismo , Homozigoto , Humanos , Infertilidade Masculina/patologia , Síndrome de Kartagener/genética , Masculino , Pessoa de Meia-Idade , Chaperonas Moleculares , Mutação de Sentido Incorreto/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Splicing de RNA/genética , Sêmen , Espermatozoides/metabolismo , Espermatozoides/patologia
10.
Hum Mutat ; 37(8): 776-85, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27120127

RESUMO

Primary ciliary dyskinesia (PCD) is an autosomal recessive disease characterized by chronic respiratory infections of the upper and lower airways, hypofertility, and, in approximately half of the cases, situs inversus. This complex phenotype results from defects in motile cilia and sperm flagella. Among the numerous genes involved in PCD, very few-including CCDC39 and CCDC40-carry mutations that lead to a disorganization of ciliary axonemes with microtubule misalignment. Focusing on this particular phenotype, we identified bi-allelic loss-of-function mutations in GAS8, a gene that encodes a subunit of the nexin-dynein regulatory complex (N-DRC) orthologous to DRC4 of the flagellated alga Chlamydomonas reinhardtii. Unlike the majority of PCD patients, individuals with GAS8 mutations have motile cilia, which, as documented by high-speed videomicroscopy, display a subtle beating pattern defect characterized by slightly reduced bending amplitude. Immunofluorescence studies performed on patients' respiratory cilia revealed that GAS8 is not required for the proper expression of CCDC39 and CCDC40. Rather, mutations in GAS8 affect the subcellular localization of another N-DRC subunit called DRC3. Overall, this study, which identifies GAS8 as a PCD gene, unveils the key importance of the corresponding protein in N-DRC integrity and in the proper alignment of axonemal microtubules in humans.


Assuntos
Axonema/patologia , Proteínas do Citoesqueleto/genética , Síndrome de Kartagener/genética , Mutação , Proteínas de Neoplasias/genética , Adulto , Criança , Proteínas do Citoesqueleto/metabolismo , Feminino , Predisposição Genética para Doença , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Síndrome de Kartagener/metabolismo , Síndrome de Kartagener/patologia , Masculino , Proteínas de Neoplasias/metabolismo , Análise de Sequência de DNA
11.
Hum Mol Genet ; 25(8): 1457-67, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26792177

RESUMO

Idiopathic interstitial pneumonias (IIPs) comprise a heterogeneous group of rare lung parenchyma disorders with high morbidity and mortality, which can occur at all ages. In adults, the most common form of IIPs, idiopathic pulmonary fibrosis (IPF), has been associated with an increased frequency of lung cancer. The molecular basis of IIPs remains unknown in most cases. This study investigates IIP pathophysiology in 12 families affected by IPF and lung cancer. We identified, in a multigenerational family, nine members carrying a heterozygous missense mutation with evidence of pathogenicity in SFTPA1 that encodes the surfactant protein (SP)-A1. The mutation (p.Trp211Arg), which segregates with a disease phenotype characterized by either isolated IIP/IPF, or IPF associated with lung adenocarcinoma, is located in the carbohydrate recognition domain (CRD) of SP-A1 and involves a residue invariant throughout evolution, not only in SP-A1, but also in its close paralog SP-A2 and other CRD-containing proteins. As shown through functional studies, the p.Trp211Arg mutation impairs SP-A1 secretion. Immunohistochemistry studies on patient alveolar epithelium showed an altered SP-A expression pattern. Overall, this first report of a germline molecular defect in SFTPA1 unveils the key role of SP-A1 in the occurrence of several chronic respiratory diseases, ranging from severe respiratory insufficiency occurring early in life to the association of lung fibrosis and cancer in adult patients. These data also clearly show that, in spite of their structural and functional similarities, SP-A1 and SP-A2 are not redundant.


Assuntos
Mutação em Linhagem Germinativa , Pneumonias Intersticiais Idiopáticas/genética , Neoplasias Pulmonares/genética , Mutação de Sentido Incorreto , Proteína A Associada a Surfactante Pulmonar/genética , Adulto , Idoso , Feminino , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Pneumonias Intersticiais Idiopáticas/patologia , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Linhagem , Proteína A Associada a Surfactante Pulmonar/metabolismo , Análise de Sequência de DNA
12.
Am J Hum Genet ; 97(1): 153-62, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26073779

RESUMO

Primary ciliary dyskinesia (PCD) is a rare autosomal-recessive condition resulting from structural and/or functional defects of the axoneme in motile cilia and sperm flagella. The great majority of mutations identified so far involve genes whose defects result in dynein-arm anomalies. By contrast, PCD due to CC/RS defects (those in the central complex [CC] and radial spokes [RSs]), which might be difficult to diagnose, remains mostly unexplained. We identified non-ambiguous RSPH3 mutations in 5 of 48 independent families affected by CC/RS defects. RSPH3, whose ortholog in the flagellated alga Chlamydomonas reinhardtii encodes a RS-stalk protein, is mainly expressed in respiratory and testicular cells. Its protein product, which localizes within the cilia of respiratory epithelial cells, was undetectable in airway cells from an individual with RSPH3 mutations and in whom RSPH23 (a RS-neck protein) and RSPH1 and RSPH4A (RS-head proteins) were found to be still present within cilia. In the case of RSPH3 mutations, high-speed-videomicroscopy analyses revealed the coexistence of immotile cilia and motile cilia with movements of reduced amplitude. A striking feature of the ultrastructural phenotype associated with RSPH3 mutations is the near absence of detectable RSs in all cilia in combination with a variable proportion of cilia with CC defects. Overall, this study shows that RSPH3 mutations contribute to disease in more than 10% of PCD-affected individuals with CC/RS defects, thereby allowing an accurate diagnosis to be made in such cases. It also unveils the key role of RSPH3 in the proper building of RSs and the CC in humans.


Assuntos
Cílios/genética , Síndrome de Kartagener/genética , Síndrome de Kartagener/patologia , Mutação/genética , Proteínas do Tecido Nervoso/genética , Fenótipo , Cílios/ultraestrutura , Predisposição Genética para Doença , Humanos , Microscopia de Vídeo
13.
Arthritis Rheumatol ; 66(9): 2621-7, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24891336

RESUMO

OBJECTIVE: Autoinflammatory disorders are caused by a primary dysfunction of the innate immune system. Among these disorders are hereditary recurrent fevers, which are characterized by recurrent episodes of fever and inflammatory manifestations affecting multiple tissues. Hereditary recurrent fevers often lack objective diagnostic criteria, thereby hampering the identification of disease-causing genes. This study was undertaken to identify a gene responsible for hereditary recurrent fevers. METHODS: Copy number variations and point mutations were sought by array-comparative genomic hybridization and polymerase chain reaction sequencing, respectively. Serum cytokine levels were measured using Luminex technology. The effect of TNFRSF11A molecular defects on NF-κB signaling in cells expressing wild-type and mutated forms of the receptor was evaluated by luciferase assay. RESULTS: A patient with multiple congenital anomalies and hereditary recurrent fever was found to carry a de novo heterozygous complex chromosomal rearrangement encompassing a duplication of TNFRSF11A, a gene known to regulate fever in rodents. We also identified a heterozygous frameshift mutation (p.Met416Cysfs*110) in TNFRSF11A in a mother and daughter with isolated hereditary recurrent fever. This mutation was associated with increased secretion of several inflammatory cytokines (tumor necrosis factor α [TNFα], interleukin-18 [IL-18], IL-1 receptor antagonist, interferon-γ) and altered the biologic effects of the receptor on NF-κB signaling. The disease in the patients described herein exhibits striking clinical similarities to TNF receptor-associated periodic syndrome, another hereditary recurrent fever involving a gene of the same family (TNFRSF1A). CONCLUSION: The involvement of TNFRSF11A in hereditary recurrent fever highlights the key role of this receptor in innate immunity. The present results also suggest that TNFRSF11A screening could serve as a new diagnostic test for autoinflammatory disorders.


Assuntos
Variações do Número de Cópias de DNA , Doenças Hereditárias Autoinflamatórias/genética , Imunidade Inata/genética , Mutação , Receptor Ativador de Fator Nuclear kappa-B/genética , Adulto , Pré-Escolar , Feminino , Genótipo , Doenças Hereditárias Autoinflamatórias/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Receptor Ativador de Fator Nuclear kappa-B/metabolismo
14.
Am J Hum Genet ; 93(3): 561-70, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-23993197

RESUMO

Primary ciliary dyskinesia (PCD) is a rare autosomal-recessive respiratory disorder resulting from defects of motile cilia. Various axonemal ultrastructural phenotypes have been observed, including one with so-called central-complex (CC) defects, whose molecular basis remains unexplained in most cases. To identify genes involved in this phenotype, whose diagnosis can be particularly difficult to establish, we combined homozygosity mapping and whole-exome sequencing in a consanguineous individual with CC defects. This identified a nonsense mutation in RSPH1, a gene whose ortholog in Chlamydomonas reinhardtii encodes a radial-spoke (RS)-head protein and is mainly expressed in respiratory and testis cells. Subsequent analyses of RSPH1 identified biallelic mutations in 10 of 48 independent families affected by CC defects. These mutations include splicing defects, as demonstrated by the study of RSPH1 transcripts obtained from airway cells of affected individuals. Wild-type RSPH1 localizes within cilia of airway cells, but we were unable to detect it in an individual with RSPH1 loss-of-function mutations. High-speed-videomicroscopy analyses revealed the coexistence of different ciliary beating patterns-cilia with a normal beat frequency but abnormal motion alongside immotile cilia or cilia with a slowed beat frequency-in each individual. This study shows that this gene is mutated in 20.8% of individuals with CC defects, whose diagnosis could now be improved by molecular screening. RSPH1 mutations thus appear as a major etiology for this PCD phenotype, which in fact includes RS defects, thereby unveiling the importance of RSPH1 in the proper building of CCs and RSs in humans.


Assuntos
Cílios/genética , Proteínas de Ligação a DNA/genética , Predisposição Genética para Doença , Síndrome de Kartagener/genética , Síndrome de Kartagener/patologia , Mutação/genética , Sequência de Aminoácidos , Cílios/ultraestrutura , Proteínas de Ligação a DNA/química , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Família , Feminino , Humanos , Masculino , Microscopia de Vídeo , Dados de Sequência Molecular , Fenótipo , Respiração
15.
Am J Hum Genet ; 91(5): 958-64, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-23122589

RESUMO

Primary ciliary dyskinesia (PCD) is a group of autosomal-recessive disorders resulting from cilia and sperm-flagella defects, which lead to respiratory infections and male infertility. Most implicated genes encode structural proteins that participate in the composition of axonemal components, such as dynein arms (DAs), that are essential for ciliary and flagellar movements; they explain the pathology in fewer than half of the affected individuals. We undertook this study to further understand the pathogenesis of PCD due to the absence of both DAs. We identified, via homozygosity mapping, an early frameshift in LRRC6, a gene that encodes a leucine-rich-repeat (LRR)-containing protein. Subsequent analyses of this gene mainly expressed in testis and respiratory cells identified biallelic mutations in several independent individuals. The situs inversus observed in two of them supports a key role for LRRC6 in embryonic nodal cilia. Study of native LRRC6 in airway epithelial cells revealed that it localizes to the cytoplasm and within cilia, whereas it is absent from cells with loss-of-function mutations, in which DA protein markers are also missing. These results are consistent with the transmission-electron-microscopy data showing the absence of both DAs in cilia or flagella from individuals with LRRC6 mutations. In spite of structural and functional similarities between LRRC6 and DNAAF1, another LRR-containing protein involved in the same PCD phenotype, the two proteins are not redundant. The evolutionarily conserved LRRC6, therefore, emerges as an additional player in DA assembly, a process that is essential for proper axoneme building and that appears to be much more complex than was previously thought.


Assuntos
Dineínas do Axonema/genética , Síndrome de Kartagener/genética , Mutação , Proteínas/genética , Alelos , Sequência de Aminoácidos , Dineínas do Axonema/metabolismo , Cílios/genética , Cílios/patologia , Consanguinidade , Sequência Consenso , Proteínas do Citoesqueleto , Feminino , Fertilidade/genética , Ordem dos Genes , Humanos , Síndrome de Kartagener/metabolismo , Masculino , Dados de Sequência Molecular , Fenótipo , Transporte Proteico , Proteínas/química , Proteínas/metabolismo , Alinhamento de Sequência , Cauda do Espermatozoide/metabolismo , Cauda do Espermatozoide/patologia
16.
Eur J Endocrinol ; 167(1): 85-91, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22535646

RESUMO

BACKGROUND: In humans, pituitary hormone deficiency may be part of a syndrome including extra-pituitary defects like ocular abnormalities. Very few genes have been linked to this particular phenotype. In the mouse, Lhx2, which encodes a member of the LIM (Lin-11, Isl-1, and Mec-3) class of homeodomain proteins, was shown to be expressed during early development in the posterior pituitary, eye, and liver, and its expression persists in adulthood in the central nervous system Lhx2(-/-) mice display absence of posterior pituitary and intermediate lobes, malformation of the anterior lobe, anophthalmia, and they die from anemia. METHODS: We tested the implication of the LHX2 gene in patients presenting pituitary hormone deficiency associated with ectopic or nonvisible posterior pituitary and developmental ocular defects. A cohort of 59 patients, including two familial cases, was studied. Direct sequencing of the LHX2 coding sequence and intron/exon boundaries was performed. LHX2 transcriptional activity on several pituitary promoters (AGSU, PRL, POU1F1, and TSHB) was tested in vitro. RESULTS: Six heterozygous sequence variations were identified, among which two are novel missense changes (p.Ala203Thr and p.Val333Met). In vitro, LHX2 activates transcription of TSHB, PRL, and POU1F1 promoters in the HEK293 cell line. A synergistic action of POU1F1 and LHX2 was also shown on these promoters. The two missense variations were tested and no significant difference was observed, leading to the conclusion that they are not deleterious. CONCLUSIONS: These results suggest that if LHX2 is involved in pituitary hormone deficiency associated with posterior pituitary and ocular defects, it would be a rare cause of this disease condition.


Assuntos
Cegueira/genética , Transtornos do Crescimento/genética , Proteínas com Homeodomínio LIM/genética , Doenças do Nervo Óptico/genética , Neuro-Hipófise/anormalidades , Displasia Septo-Óptica/genética , Fatores de Transcrição/genética , Adulto , Criança , Pré-Escolar , Feminino , Testes Genéticos , Humanos , Lactente , Masculino , Mutação de Sentido Incorreto , Nervo Óptico/anormalidades , Regiões Promotoras Genéticas
17.
Hum Mutat ; 31(4): 391-406, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20127975

RESUMO

Waardenburg syndrome (WS) is characterized by the association of pigmentation abnormalities, including depigmented patches of the skin and hair, vivid blue eyes or heterochromia irides, and sensorineural hearing loss. However, other features such as dystopia canthorum, musculoskeletal abnormalities of the limbs, Hirschsprung disease, or neurological defects are found in subsets of patients and used for the clinical classification of WS. Six genes are involved in this syndrome: PAX3 (encoding the paired box 3 transcription factor), MITF (microphthalmia-associated transcription factor), EDN3 (endothelin 3), EDNRB (endothelin receptor type B), SOX10 (encoding the Sry bOX10 transcription factor), and SNAI2 (snail homolog 2), with different frequencies. In this review we provide an update on all WS genes and set up mutation databases, summarize molecular and functional data available for each of them, and discuss the applications in diagnostics and genetic counseling.


Assuntos
Mutação/genética , Síndrome de Waardenburg/genética , Humanos , Fatores de Transcrição/genética , Síndrome de Waardenburg/classificação , Síndrome de Waardenburg/diagnóstico , Síndrome de Waardenburg/patologia
18.
Arthritis Rheum ; 62(4): 1176-85, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20131254

RESUMO

OBJECTIVE: To gain insight into the pathophysiology of an atypical familial form of an autoinflammatory disorder, characterized by autosomal-dominant sensorineural hearing loss, systemic inflammation, increased secretion of interleukin-1beta (IL-1beta), and the absence of any cutaneous manifestations, and to assess the functional consequences of a missense mutation identified in the leucine-rich repeat (LRR) domain of NLRP3. METHODS: Microsatellite markers were used to test the familial segregation of the NLRP3 locus with the disease phenotype. All NLRP3 exons were screened for mutations by sequencing. Functional assays were performed in HEK 293T cells to determine the effects of mutated (versus normal) NLRP3 proteins on NF-kappaB activation, caspase 1 signaling, and speck formation. RESULTS: A heterozygous NLRP3 missense mutation (p.Tyr859Cys) was identified in exon 6, which encodes the LRR domain of the protein. This mutation was found to segregate with the disease phenotype within the family, and had a moderate activating effect on speck formation and procaspase 1 processing and did not alter the inhibitory properties of NLRP3 on NF-kappaB signaling. CONCLUSION: This report is the first to describe a familial form of a cryopyrinopathy associated with a mutation outside of exon 3 of NLRP3. This finding, together with the known efficacy of anti-IL-1 treatments in these disorders, underlines the importance of screening all exons of NLRP3 in patients who present with atypical manifestations. In addition, the gain of function associated with this mutation in terms of activation of caspase 1 signaling was consistent with the observed inflammatory phenotype. Therefore, this study of the functional consequences of an LRR mutation sheds new light on the clinical relevance of in vitro assays.


Assuntos
Proteínas de Transporte/genética , Mutação em Linhagem Germinativa , Doenças Hereditárias Autoinflamatórias/genética , Sequência de Aminoácidos , Linhagem Celular , Citocinas/sangue , DNA/genética , Primers do DNA , Feminino , Variação Genética , Doenças Hereditárias Autoinflamatórias/fisiopatologia , Humanos , Interleucina-1beta/sangue , Rim/embriologia , Masculino , Monócitos/patologia , Mães , Mutação de Sentido Incorreto , Proteína 3 que Contém Domínio de Pirina da Família NLR , Plasmídeos , Irmãos
19.
Eur J Hum Genet ; 17(10): 1325-35, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19367324

RESUMO

Oculofaciocardiodental (OFCD) and Lenz microphthalmia syndromes form part of a spectrum of X-linked microphthalmia disorders characterized by ocular, dental, cardiac and skeletal anomalies and mental retardation. The two syndromes are allelic, caused by mutations in the BCL-6 corepressor gene (BCOR). To extend the series of phenotypes associated with pathogenic mutations in BCOR, we sequenced the BCOR gene in patients with (1) OFCD syndrome, (2) putative X-linked ('Lenz') microphthalmia syndrome, (3) isolated ocular defects and (4) laterality phenotypes. We present a new cohort of females with OFCD syndrome and null mutations in BCOR, supporting the hypothesis that BCOR is the sole molecular cause of this syndrome. We identify for the first time mosaic BCOR mutations in two females with OFCD syndrome and one apparently asymptomatic female. We present a female diagnosed with isolated ocular defects and identify minor features of OFCD syndrome, suggesting that OFCD syndrome may be mild and underdiagnosed. We have sequenced a cohort of males diagnosed with putative X-linked microphthalmia and found a mutation, p.P85L, in a single case, suggesting that BCOR mutations are not a major cause of X-linked microphthalmia in males. The absence of BCOR mutations in a panel of patients with non-specific laterality defects suggests that mutations in BCOR are not a major cause of isolated heart and laterality defects. Phenotypic analysis of OFCD and Lenz microphthalmia syndromes shows that in addition to the standard diagnostic criteria of congenital cataract, microphthalmia and radiculomegaly, patients should be examined for skeletal defects, particularly radioulnar synostosis, and cardiac/laterality defects.


Assuntos
Anormalidades do Olho/genética , Cardiopatias/genética , Deficiência Intelectual/genética , Microftalmia/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética , Adolescente , Adulto , Idoso , Alelos , Animais , Criança , Pré-Escolar , Estudos de Coortes , Anormalidades do Olho/complicações , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/complicações , Doenças Genéticas Ligadas ao Cromossomo X/genética , Cardiopatias/complicações , Humanos , Recém-Nascido , Deficiência Intelectual/complicações , Masculino , Microftalmia/complicações , Pessoa de Meia-Idade , Síndrome
20.
Eur J Hum Genet ; 16(6): 680-7, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18197200

RESUMO

Among previously reported cases of 14q terminal deletions, only 11 have dealt with pure terminal deletion of 14q (14q3-14qter) and the break points were mapped by fluorescent in situ hybridisation (FISH) or genotyping in only four of them. Thanks to a collaborative study on behalf of the 'Association des Cytogeneticiens de langue Française'(ACLF), we report two patients with terminal deletion of the long arm of chromosome 14, del(14)(q32.2) and del(14)(q32.32), diagnosed by subtelomere screening. In the two cases, a thick nuchal skinfold was detected by early ultrasound with normal prenatal karyotype. Their postnatal phenotype included large forehead, narrow palpebral fissures, epicanthic folds, upturned tip of the nose, narrow mouth and thin upper lip, microretrognathia, prominent earlobes, hypotonia, delayed psychomotor development and hypoplastic corpus callosum. By physical mapping using FISH, the size of the deletions was measured for patients 1 and 2: 6.55+/-1.05 and 4.67+/-0.10 Mb, respectively. The paternal origin of the deleted chromosome 14 was established by genotyping of microsatellites for patient 1 and the phenotype of terminal del(14)(q32) was compared to maternal uniparental disomy 14.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 14 , Corpo Caloso/patologia , Sequência de Bases , Primers do DNA , Genótipo , Humanos , Hibridização in Situ Fluorescente , Recém-Nascido , Masculino , Repetições de Microssatélites/genética , Fenótipo , Telômero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...